MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Tuesday 21 May 2013 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]

The binary operation $*$ is defined on \mathbb{N} by $a * b=1+a b$.
Determine whether or not *
(a) is closed;
(b) is commutative;
(c) is associative;
(d) has an identity element.
2. [Maximum mark: 16]

Consider the set $S=\{1,3,5,7,9,11,13\}$ under the binary operation multiplication modulo 14 denoted by \times_{14}.
(a) Copy and complete the following Cayley table for this binary operation.

\times_{14}	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{1 3}$
$\mathbf{1}$	1	3	5	7	9	11	13
$\mathbf{3}$	3				13	5	11
$\mathbf{5}$	5				3	13	9
$\mathbf{7}$	7						
$\mathbf{9}$	9	13	3				
$\mathbf{1 1}$	11	5	13				
$\mathbf{1 3}$	13	11	9				

(b) Give one reason why $\left\{S, \times_{14}\right\}$ is not a group.
(c) Show that a new set G can be formed by removing one of the elements of S such that $\left\{G, \times_{14}\right\}$ is a group.
(Question 2 continued)
(d) Determine the order of each element of $\left\{G, \times_{14}\right\}$.
(e) Find the proper subgroups of $\left\{G, \times_{14}\right\}$.
3. [Maximum mark: 13]

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)=\left\{\begin{array}{cc}
2 x+1 & \text { for } x \leq 2 \\
x^{2}-2 x+5 & \text { for } x>2
\end{array}\right.
$$

(a) (i) Sketch the graph of f.
(ii) By referring to your graph, show that f is a bijection.
(b) Find $f^{-1}(x)$.
4. [Maximum mark: 13]

The relation R is defined on $\{1,2,3,4,5,6,7,8,9,10,11,12\}$ by $a R b$ if and only if $a(a+1) \equiv b(b+1)(\bmod 5)$.
(a) Show that R is an equivalence relation.
(b) Show that the equivalence defining R can be written in the form

$$
(a-b)(a+b+1) \equiv 0(\bmod 5)
$$

(c) Hence, or otherwise, determine the equivalence classes.
5. [Maximum mark: 8]
H and K are subgroups of a group G. By considering the four group axioms, prove that $H \cap K$ is also a subgroup of G.

